## Math 131 - Slope Review

SLOPE is a very important concept in higher mathematics. For now, we use slope to measure the steepness of the graph of a line. Moving forward, slope can give us all sorts of information in physical applications such as the velocity of a moving object.
There are different ways to determine the slope of a line; the approach you should take depends on the information given. $\mathrm{m}=$ Slope $=\frac{\text { change in } y}{\text { change in } x}=\frac{\Delta y}{\Delta x}=\frac{\text { rise }}{\text { run }}=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
(1) Given a pair of points on the line $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, slope is measured by: $\mathrm{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Example: Fine the slope of the line passing through the points $(4,2)$ and $(-1,7)$

Special Case Example: Fine the slope of the line passing through the points $(3,2)$ and $(5,2)$

Special Case Example: Fine the slope of the line passing through the points $(1,5)$ and $(1,-2)$
(2) Given the graph of a line:

Locate two points A and B as accurately as possible (preferably grid points) on the given line and count squares vertically from point $A$ to point $B$ (up yields positive, downward yields negative). This is called the rise or vertical change. Then count squares horizontally from point A to point B (right yields positive, left yields negative). This is called the run or horizontal change. $\mathrm{m}=\frac{\text { rise }}{\text { run }}$
Example: Given the graphs below, compute the slope:


(3) Given an equation of the line, determine the slope directly by using slope intercept form, $\mathrm{y}=\mathrm{mx}+\mathrm{b}$. (Solve the equation for y , then the slope will be the coefficient of x .)

Example: Find the slope of the line $2 x-5 y=8$
Special Case Example: $x=4$

Special Case Example: y=-5

## Try these:

Find the slope in each of the following problems:

1) The equation of the line is $5 x-4 y=8$
2) The line passes through $(1,3)$ and $(-3,4)$
3) The graph of the line is

4) The equation of the line is $x=7$
5) The graph of the line is


## SLOPE AND STEEPNESS



## OBSERVATIONS ABOUT SLOPE:

Lines with positive slopes: $\qquad$

Lines with negative slopes: $\qquad$
Steeper lines: $\qquad$
Flatter lines: $\qquad$

Horizontal lines: $\qquad$
Vertical lines: $\qquad$
OTHER FACTS ABOUT SLOPE - PARALLEL AND PERPENDICULAR LINES:
Parallel lines have equal slopes.
Perpendicular lines have slopes which are negative reciprocals $m_{1} m_{2}=-1$

Example: If point $\mathrm{A}=(4,2)$ and $\mathrm{B}-(-1,7)$,
a) Find the slope of a line parallel to $A B$
b) Find the slope of a line perpendicular to AB

Example: If line $L$ is given by $2 x+3 y=7$,
a) Find the slope of a line perpendicular to $L$
b) Find the slope of a line parallel to $L$

